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Parametric Polynomial Curves of

Local Approximation of Order 8

K. Scherer

Abstract. Parametric approximation of curves offers the possibility of
increasing the order of approximation by using the additional parameters
in the parametrization of the curve. This has been studied in several
papers, see e.g.[1-8]. The resulting problems are highly nonlinear. Here
the cases of approximation order 0(h 8) are studied which need piecewise
quartic curves in the plane and piecewise quintic curves in space.

§1. Introduction

A general conjecture concerning the local approximation order by polynomial
curves can be formulated as follows (see e.g. Morken-Scherer [6]):

* For sufficiently small h > 0 and a sufficiently smooth curve f_(t) : t E

[0, h] -, f(t) E Rd, there exists a polynomial curve p(t) of degree n and
a reparametrization W of f on [a, b] such that

sup 1I(fo w)(t) - p(t)II _< C(_f)h'
O<t<h

where m := n + 1 + [n-1].

The increased order m is explained in [6] by the principle of degree reducing.
It comes from the idea of approximating with an interpolating polynomial
curve p(t) of degree m - 1 such that

pAti) = (f o 0)(ti), 1 < i < m, (1)

for points ti in [0, h] (multiplicities allowed). The additional parameters oc-
curing via the reparametrization 0 are used to reduce the degree m - 1 of p(t)
by requiring

[t, ... ,tm-i](p) = [ti,...,tm-i](f 0 ) = 0, i = 0,... ,k- 1, (2)
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with k as large as possible. Since we have to normalize 0 such that 0(0) =
0, 0(h) = h, there are mr- 2 parameters left at our disposal for this goal. Thus
m-1 can be reduced to n = m-i-k, where k.d < mr-2 or k < (n-1)/(d-1).

From classical approximation theory it is then clear that a solution of
(1),(2) yields a polynomial curve p(t) of degree m - 1 - k satisfying

sup II(f o 0)(t) -p(t)ll < h m sup IID'(f o0)(t)11. (3)
O<t<h O<t<h

Thus conjecture (.) is true if one can guarantee in addition that the parame-
ters 0(2)(0),. ,0(m)(0) of a solution of (2) remain bounded for h --* 0. This
question of stability is also discussed in [6]. Note also that in this case equa-
tions (1) can be written as

p0o0- 1(SO)= f(8i), l< i< m,

where the nodes si are defined by si := 0(ti).
The most interesting case of the conjecture is when (n - 1)/(d - 1) is an

integer k, i.e. m = n + 1 + k = kd + 2. In this case there are kd equations in
(2), and the degree m - 1 is reduced by k. Then 0 is determined by

[tl,...-, tn+l+i](fo0¢) = 0, i l..k, (4)

and p(t) by the first n + 1 equations in (1).
So far the conjecture seems to be proved only in the case n = d or k = 1

(see [5-6]) and for k = 2 = d (see [1,3]). Here we treat the next most difficult
cases k = 3, d = 2 and k = 2, d = 3, which amount to six equations in (4),
and will lead to quartic curves in the plane and quintic curves in space with
approximation rates of order 8, respectively.

§2. Reduction to 2 x 2 Systems

In Morken -Scherer [6] equations (4) were studied in particular for the Taylor
case

D n+ý(f o 0) = 0, i 1 .. ,k.

The crucial point is then the formula of Faa di Bruno in the form given by
T. Goodman. It reads (cf. [4])

D 1(f_ 0) )(0) = ZaiJf( )(0), A 0()(0) (5)
j=1

where
ai~j Oij1 •l

and

1 .i. l!... lj!m ! ... m !
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Here the integer r denotes the number of distinct integers among the 11,..., lj,
where mi,.. •, mr are the multiplicities of them. Specific examples are

[1/21

aj~i=/3i, al,2= (ý')oioi-i, l ,

At first we consider the planar case d = 2 for k = 3. Then the equations (4)
specialize to

D7(f o4)(O)=O, j = 5,6,7. (6)

Under the normalization 0(0) = 0, /31 := '(0) = 1, this yields six equations
for the unknowns /32, ... ,07/. In [8] this system has been reduced to a 2 x 2
system for /32,033. The basic idea was to simplify system (6) by determining a
preliminary reparametrization 0 with V)(0) = 0, 7'(0) = 1 such that

D 2i+l(f o )(0)=0, i=1,2,3.

It can easily be shown that this system is uniquely solvable in the unknowns

"Y2, ... , Y7, where -yj := 0(j)(0) provided

span (f'(0), f"(0)) = I2 (7)

Thus one can assume that D3 f(0) =- Df(0) = D 7f(0) in (6). Denoting dij

as the cross product of f(i) and f(i) in ]R 2, i.e.

di~j :-= f () x f(j).

Further straightforward computation (cf. [9] ) leads to

Lemma 1. Under the assumption (7) and the normalization 0(0) = 0, /31
0'(0) = 1, the vector /32, ... , 37 is a solution of the equations (7) iff 3 2,/33 is a
solution of the 2 x 2 system

0 = d 6 ,1 + 20d 4 ,1 033 + 10d 2 ,1 03 1

+ 60/32d4,2 + 15(d 4,1 - 2d 2 ,,/33 )/32, (8)

and

0 = 15023d 4,1 + 75022d 4,2 + (3d 6,1 - 10d2,1/d 2 ,1)02 + d6,2

+ 10(2d 4,2 + 0/32 4,1)/33 - 10d2,1/32/32.

The elimination of the variable /3 in this system along the lines of the
resultant method yields an equation of degree 9 in /32. However, it was over-
looked in [8] that the constant term in this equation vanishes, so that it is in
essence of degree 8 . Thus, existence of a (real) solution of (8)-(9) cannot be
derived in this way. We will close this gap in the next section.
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In the space case d = 3 we have to find a reparametrization € such that

D'(fo¢)(0)=0, j=6,7. (10)

We simplify this again by determining a reparametrization 7 with 0(0) - 0,
0'(0) = 1, 0(j)(0) := and

D'(f o-)(0) =-0, j-=4,7.

This is possible since by (5), in the three equations forming D 4 (f o 0)(0) = 0

the coefficients of f', f " and fI'1 are linear in the unknowns 'Y2, 73,74, and in
the latter three are linear with respect to the 75, 76, 77. Therefore, these
equations are uniquely solvable under the assumption

span (f'(0), f"(0), f"(0)) = R:3 , (11)

and we can consider (10) without loss under the assumption D 4(f)(0) =
D7 (f)(0) = 0. This yields (with /31 = 1) the equations

0 =/30' + (6035 + 15032/34 + 10/332)f"

+ (15034 + 60/32/33 + 15/3 2)f + 15/32f_5 ) + f_(5),

0 -/307f' + (7/36 + 21/302/35 + 35/33/34)f" + (105/32 + 35/33)f(5)
1052 f- ,) ( 1 3 )

+ (21/35 + 105/32/34 + 70/33 + 105/32/33)f"' + 21/32f( 6 ).

The next step is to take in (12) the scalar product with cross products f' x

f", f' x f11 and f" x f "', respectively. We obtain the equivalent equations

0 = (15/34 + 60/32/33 + 15/33)di,2,3 + 15/32d5,1,2 + d6,1,2  (14)

0 -(6/35 + 15/32/34 + 10/3)d 2,1,3 + 15)32d5,1,3 + d6,1,3 (15)

0 = /36 dl, 2 ,3 + 15/32 d 5 ,2 ,3 + d6,2,3, (16)

where
(_f(",) x f_("), f(j)) := det (f("), f(i2),f_(j)) := djý,i2,J.

These equations serve for eliminating the variables 04,05 and /36 since they
appear linearly. Before doing this, we transform (13) into three equivalent
scalar equations analogously to (12). We obtain the three equations

0 -- /37d,, 2,3 + (105/32 + 35/33)d 5,2,3 + 21/32d 6,2,3, (17)

0 = (/36 + 3/32/35 + 5/33/34 )d2,1,3 + (15/32 + 5/3 3)d5,1,3 + 3/32d6,1,3, (18)

0 = (3/35 + 15/32/34 + 10/32 + 15/32/3 3)d 3,1,2 + (15/3•+ 5/33)ds, 1,2 +3/3 2d6,1,2. (19)
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Equation (17) determines /37 directly in terms of /32,/33. Now we eliminate
/35,,36 in (18) via (15),(16). This gives at first

0 = -(3/32/35 + 5/30/34 )d 2 , 1,3 + (15/32 + 5/33 )d5,1,3 + 3/32 (d 6 , 1,3 + 5d 5,2,3) + d6,2,3

and then

0 = -1-3221 ,2,3 + 5/33 d5,1,3 + 5/32 (d6 ,1,3 + 6d 5,2,3 ) + d6,2,3
15 2

+ (-1-/32/34 + 5/32/32)dl,2,3 - 5/33/34dl,2,3.

Now we eliminate the variable/34 by (14). The result is the equation

0 = 40(/32) + 41(/32)033 + q2(/32)/32, (20)

where

0(/32) := (15/2)d1 ,2,3/35 - (15/2)d1 , 2,5/32 2 [(15/2)dl, 3,5 - (1/2)dl, 2,6]/32
+ (15d 2,3,5 - (5/2)dl,3,6 )/32 + d2,3,6 ,

41(/32) := (1/3)dl, 2,6 + 5d 1 ,3,5 + 5d1,2,5/32 - 25di, 2,3/33,

42(/32) -25dl, 2,3/32.

Analogously we reduce equation (19) to an equation in /32,133 by eliminating
/35 and then/34. Using (15), we obtain

0 = (5/32 + 15232f3 )d1, 2,3 + (15/32 + 5/33)d5,1,2
5 d6, 3  15

+ 3/32 (d6,1,2 + -d 5 ,1 ,3 ) + --1 + -0204d,,2,3,

and then by (14)

0 = dl,2,3 (-15/32 + 30/33/32 + 10/32) + d5,1,2(15/322 + 10/33) (21)

+/3 2 (15d5, 1,3 + 5d 6,1,2) + d6,1 ,3.

In order to get rid of the term with /3 in (21), we make a final substitution

/33 := 3 + a,/32 , a := (3/2) + v1/2.

Then
-15/34 - 30/33/2 + 1032 = [-30,32 + 20a/3]#3 + 10/33,

and (21) simplifies to

0 = Po(03) + P1 (0 3)/32 + P2()13)322, (22)
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where
Po(03) 10d,, 2,3) 3

2 + 10d1,2,503 + dl,3,6,

P03) 5d 1,2,6 + 15dl,3 ,5, (23)

P2(03) 10vi/•d1 ,2,30 3 + (15 + 10Cv)di, 2,5.

With the new variable 03, (20) transforms into

0 qo(/32) + ql(032)03 + q2 (02)/#3
2, (24)

with
qo(/32) 40(/32) - 25a 2

di 2 3 /35 + a/0,41(/32),

ql(/32) 41(/32) - 50d, 2 ,333,

q2(/32) 42(/32) = -25d,,2,302,

and the i(/32) defined as above. We summarize all this in

Lemma 2. Under the assumption dl, 2,3 54 0, i.e. assumption (11), and the
normalization 0(0) = 0,,31 := 0'(0) = 1, the vector 32,...,/37 is a solution of
the equations (22), (24) iff/32,0/3 is a solution of the 2 x 2 system (22), (24).

Remark: The systems (8)-(9) in the planar case, and (22)-(24) in the space
case possess a similar structure. In (8) and (22) the coefficients of /32 are
polynomials of the same degree in/33 and /32, respectively. The same is true for
(9) and (24), except that the corresponding polymials have different degrees.

§3. Existence Theorems

In view of the last remark, we treat in detail only the planar case.

Theorem 1. The system (8)-(9) has at least one and at most 5 (real) solution
pairs /32,/33 outside the line /3 = d4,1/2d 2,1.

Proof: Let us write for shortness x :=/32 and y := /33 as well as

A(y) := po(y), 2B := P1(Y) = 60d 4,2 , C(y) := P2(Y) = 15d 4,1 - 30d 2 ,1y.

Then (8) reads 0 = A(y) + 2Bx + C(y)x 2 . Formal solution for x gives

-B ± VB 2 
- A(y)C(y) -B ± R-(y)

x = P(y):= C(y) - C(y) (25)

with the cubic polynomial

R(y) = 15[20d ,1 y3 + 30d4,1d 2,1 y 2 + (2d 6 ,1 d 4 ,1 - 20d 2,)y + 240d4,2 - d 4 ,1 d 6 , 11.

Then write (9) as 0 = E3 o aix2 + boy + blxy + b2 xy 2, and insert (25), since
by assumption C(y) 54 0. After multiplication with C(y) 3 , we obtain

3

0 = -ai(-B ±- /(y))C(y) 3 - + boyC(y)3

+b( (26)
+ bj(-B Vf- /(y))C(y)2 + b2y2 (-B ±- V/R-(-•)C(y)2.
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Now observe that

(-B ± xR-) 2 = B 2 + R(y) ± 2B V/R(y),

(-B ± vR(y) 3 = -B 3 ± 3B 2 V/R-(Y) - 3BR(y) ± R(y)-R-(y),

and sort all terms with and without V/R--(y), respectively. Then (26) can be
written as

U(y) V (= y) R(y), (27)

where U(y) is a polynomial with leading term -11 • 15. •9000 d4,2 d3, 1 y
4 and

V(y) also of degree 4 with leading term 9000 d3 1 y4.
Hence under the above assumption, /32, /3 is a solution of the system

(8)-(9) iff y = f3 is a solution of (27) with sign either + or - on the right
hand side. Suppose that nj and n2 are the numbers of solutions of these two
equations (including multiplicities). Then the squared equation

U2(y) = V2 (y)• R(y)

is of degree 11, and has 2(n, + n 2 ) solutions. Hence we conclude nl + n 2 :< 5.
To prove existence, write (9) as

H(032,/33 ) = 0, (28)

where H is of degree 3 in /32 and with -100232/d 2,1 as leading term in 03. Then
introduce y* as the largest zero of R(y), so that in view of R(+oo) = +0o

R(y*) = 0, R(y) > 0 fory*<y<oo.

Now insert both functions T+(y) in (28), and obtain the functions

H+(y) := H(_p+(y), y).

In order to guarantee existence of a solution of (8)-(9), it suffices therefore to
show that the ranges of H+ satisfy

H+[y*, oo) U H- [y*, oo) = R. (29)

For this, observe at first the properties

ý0+(y*) -B/C(y*) = 2d 4,2/(d 4,1 -
2 y* d2,1 ) := *

and

(y) I -Y11/2sign (d 2 j), y - co.
__ 3

Then we distinguish the cases (assume without loss d2,1 > 0):

i) y* > ý := d4,1/2d 2j, ii) y* < ý.
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In case i), we consider the ranges of W+ for (y*, oo), and have

W+[y*,oo) = (-oV, *] V -_[y*, o) = [ n*,o0) (30)

Since both V+ are well defined and continuous on (y*, oo), so are the functions
H+(y), and furthermore

H+(y*) = H(,P*,y*).

In combination with

H+(y) ; 10Id 2,iI1YI 2P+(y), y -- 0o, (31)

it follows that

gH+[y*, oo) (-oo, H((p*, y*)], H_.[y*, oo) = [H(p*, y*), oo),

and hence the desired assertion (29) in case i).

In case ii), the function V_ (y) has a singularity at ý which lies in (y*, no).
However, we can restrict its domain to [y*, ý) and still have (d2,1 > 0)

V- [y*, 0 o) = (32)

On the other hand the function V+ (y) remains continuous on the whole inter-
val (y*, oo) since

V+(y) = A(y)/(B + VB 2 - A(y)C(y)).

Hence we have

p+[y*,n0) = (-0P,

so that together with (32) we have the same situation as in (30) and can
proceed further exactly as before in order to prove (29). []

It remains to discuss whether there exist solutions of (8)-(9) if 033
d4,1/2d 2,1 := ý. In this case, (8) gives 012 = A(ý)/B if B 0 0, and (9)
can have a solution only under some additional constraint on the parameters
d2,1, d4 ,1, d4,2, d6,1, d6,2. We omit it here, as well as the one which results from
(8) if in addition B = 60d4,2 = 0.

Further, we remark that there can indeed exist 5 solutions of (8)-(9). To
this end, one can consider the case d4,1 = 0, where these equations simplify
in such a way that solving (8) for z :33 - (3/2)023 gives

3 ,32 2d4,2 2-1' _ d6,1 032  + Q(03 4).
-Z 2 d2,1 30d 2,1  2

Inserting this into (9) with sign +, it follows that

0 = -90d 2,1f 2 + 255d 4,2 23 + 5d 6,10 2 + d6,2 + 0(1/012).

Here the polynomial of degree 5 dominates for large /32, and it is clear that the
4 parameters d2,1, d4 2, d 6,2, d6,1 can be chosen such that there exist 5 zeros
outside some bounded interval containing 0. The situation for the system
(22)-(24) in the space case is similar.
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Theorem 2. The system (22)-(24) has at least one and at most 7 (real)
solution pairs /32,133 if# 3 5 -(6 + vi7-)dj,2,5/5Vr'Td1,2,3.
Proof. Concerning existence, the argument is the same as in Theorem 1. We
define x := 02,Y := /3 and A(y) := po(y),B := pi(y),C(y) := P2(Y). Then
R(y) in (25) has the form

R(y) = 50v'T5d1,2 ,3y 3 + 50/15di, 2,5 Y2 + linear term.

Again define • -(6 + v'-5)dj,2,5/5V/T-dj,2,3 as the zero of C(y) and y* as
the largest zero of R(y), and let W±+(y) := (B± R•(y)/C(y). Its asymptotic
behaviour is described by

W±(y) & sgn dl23 2y 11/2, - 0 (33)

Now we distinguish as in Theorem 1 the cases i) and ii) and conclude that
either (30) holds or (31), respectively.

Next write (24) similarly as in (28) as

H(0 2,,33) = 0

and define H/±(y) := I(W+(y),y). Its asymptotic behaviour is somewhat
more complicated to determine than in (31), since by the definition of the
qi(y), i = 0, 1, 2, in (24), the leading term of H(/32, /3) now has the form

15 - 25a 2 )dl, 2, 3,35 + 25ad1,2,3/35 + (25d1,2,3 - 50ad, ,)•3 - d )132
2 22 ,32, 2 5dl2,3,•232 .

Inserting (33) with 03 = y, one derives from this

H±(y) const. IYl512, y' Y _+*

Hence we obtain the same property (29) for HI± as for H± in Theorem 1, and
existence of a (real) solution pair of (22), (24) follows.

In order to show the bound on the number of solutions, we proceed again
as in Theorem 1. We solve (22) for x = 032 as in (25) and insert it into (24)
written as

5 3

0 T, aixi + y E bix2 + cxy2'
i=O i=O

with constants ah, bi and c. This gives after multiplication with C(y)5

5

0 = Z ai(-B ± VR(y))iC(y)5-i

i=O

3

+ y bi(-B ± R(Y))iC(y)S- + cy2(-B ± R(y))C(y) 4.
i=0

Then sort by terms with and without ±Rk(y) . The result is an equation
of type (27), this time with polynomials U(y) of degree 7 and V(y) of degree
6. Therefore we conclude by the same argument as in Theorem 1 that the
system (22), (24) has at most 7 solutions. E.

The discussion of the degenerate case /3 5 -(6 ± vi7-)d 1,2,5/5VT-d 1,2,3
is omitted. It can be done similarly as for Theorem 1.
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§4. Final remarks

We have shown that local approximation order 8 can be achieved with para-
metric polynomial curves of degree 4 in the planar case, and degree 5 in the
space case. The method for this consists in determining a suitable reparame-
trization 0, and then the Taylor-polynomial with respect to _foo. For practical
purposes, however, it is important to consider also Lagrange or Hermite inter-
polation in the sense of the equations (1). This has been done in case k = 2
for d = 2 in [1,3,6] and for d = 3, in [5], but results for higher k do not seem to
be available so far. In this respect another interesting open question is which
order of geometric continuity can be preserved when a piecewise polynomial
curve is constructed by pieces of such local aproximations.
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